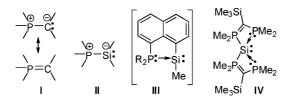
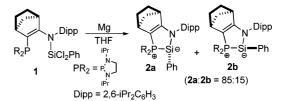


Published on Web 06/04/2009

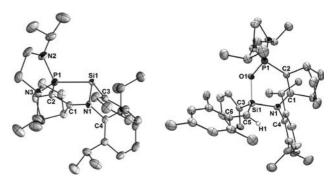

Stable Phosphonium Sila-ylide with Reactivity as a Sila-Wittig Reagent

David Gau,[†] Tsuyoshi Kato,^{*,†} Nathalie Saffon-Merceron,[†] Fernando P. Cossío,[‡] and Antoine Baceiredo^{*,†}

Université de Toulouse, UPS, LHFA, 118 route de Narbonne, F-31062 Toulouse, France, and CNRS, LHFA UMR 5069, F-31062 Toulouse, France. Departamento de Química Orgánica I, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Facultad de Química, P. K. 1072, San Sebastián-Donostia (Spain)


Received May 12, 2009; E-mail: baceired@chimie.ups-tlse.fr

The Wittig reaction, which was first reported in 1954,¹ describes the transformation of the ubiquitous carbonyl functionality into a carbon–carbon double bond with high regio- and stereoselectivity² using a phosphonium ylide, I (often called a "Wittig reagent"), and is widely recognized as one of the most important reactions in organic synthesis.^{3,4}


In marked contrast, the chemistry of the corresponding heavier silicon homologue, the phosphonium sila-ylide II, has not been developed nearly as fully. Sila-ylides are usually only short-lived reactive intermediates and were first postulated in 1978 to explain the improved [1 + 2] cycloaddition of transient silvlenes with ketones in the presence of a phosphine.⁵ In that article, the authors made the following statement: "The strong Si-O covalent bond energy and the reluctance of a silicon-carbon double bond to form very likely serve to steer the decomposition in the direction of oxasilirane formation so that a Wittig-type process does not occur". More recently, Tamao and co-workers⁶ reported the reactions of the transient phosphonium sila-ylide III with diphenylacetylene, indicating an ylide character similar to that of ylide I, whereas the structurally similar transient ammonium sila-ylides exhibit a silylene-like reactivity.7 However, the most typical and useful reaction of phosphonium ylides, the Wittig reaction, has never been demonstrated for phosphonium sila-ylides II.8 Furthermore, as experimental evidence for existence of II, only the detection at 77 K by UV spectroscopy in a soft matrix system has been described to date,⁹ although several stable silvlene-Lewis base adducts, such as silvlene-isocyanide¹⁰ or -imine¹¹ complexes as well as IV, a four-coordinate silicon(II) compound stabilized by phosphines,¹² have been already synthesized. Herein, we report the synthesis of the first stable and isolable phosphonium sila-ylide, 2, with reactivity as a sila-Wittig reagent.

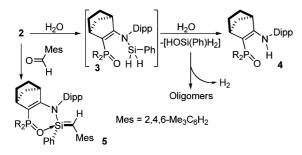
The reaction of racemic 2-phosphino enamine **1** with 1 equiv of magnesium in THF at room temperature (rt) resulted in the clean formation of the desired cyclic phosphonium sila-ylide **2**, which was isolated as pale-yellow solid (61%, mp 187 °C) (Scheme 1). Sila-ylide **2** was obtained as a mixture of two diastereomers (**2a**/**2b** = 85:15), as indicated by the presence of two sets of signals, in the same ratio, in the NMR spectra [³¹P NMR, 70.4 and 68.0 ppm; ²⁹Si NMR, -17.7 and -13.9 ppm, ¹J_{P-Si} = 157 and 141 Hz]. The

Scheme 1. Synthesis of Phosphonium Sila-ylides 2a and 2b

chemical shift of **2** in the ³¹P{¹H} NMR spectrum is at a relatively high field compared with that of **1** (102.4 ppm). The Si–P coupling constants are much larger than that observed for the silylated phosphonium cation (Me₃Si)₄P⁺ (¹J_{P-Si} = 1.4 Hz).¹³ The observation of two diastereomers (**2a** and **2b**) is consistent with a pyramidalized, chiral silicon center without inversion on the NMR time scale. Theoretical calculations predicted that **2a**, in which the phenyl group on the silicon is located on the side with less hindrance due to the asymmetric bicyclic fragment, is slightly more stable (by 2.2 kcal/mol) than **2b**.

Figure 1. Molecular structures of (left) sila-ylide **2a** and (right) silenedonor adduct **5**. Thermal ellipsoids represent 30% probability, and H atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg) for **2a**: P1–Si1, 2.304(5); Si1–C3, 1.906(2); P1–C2, 1.731(2); C2–C1, 1.381(3); C1–N1, 1.351(3); N1–Si1, 1.846(2); N1–C4, 1.456(2); P1–Si1–N1, 88.35(7); P1–Si1–C3, 106.23(16); N1–Si1–C3, 104.12(17); Si1–P1–C2, 92.34(8); P1–C2–C1, 114.86(16); C2–C1–N1, 124.22(19); C1–N1–Si1, 113.60(15); C4–N1–Si1, 125.02(16); C4–N1–C1, 121.38(18). For **5**: Si1–C5, 1.755(4); Si1–C3, 1.869(4); Si1–N1, 1.798(3); C5–C6, 1.450(5); Si1–O1, 1.729(3); P1–O1, 1.549(3); P1–C2, 1.731(2); C1–C2, 1.450(5); C1–N1, 1.351(3); C3–Si–C5, 126.32(19); N1–Si–C3, 107.09(18); N1–Si1–C3, 105.87(18); Si–C5–C6, 138.4(3).

X-ray diffraction analysis of diastereomer **2a** showed the presence of a racemic mixture of the two enantiomers in the unit cell (*P*₁/*n*). The P–Si bond distances are quite long (2.304 and 2.302 Å) for a double bond (2.05–2.09 Å)¹⁴ but comparable to that for a P–Si single bond (2.31 Å), as observed for the tetrakis(trimethylsilyl)phosphonium cation (Figure 1).¹³ Moreover, the value of the sum of the bond angles about silicon ($\sum Si_{\alpha} = 298.8^{\circ}$) is in


[†] Université de Toulouse and CNRS.

^{*} Universidad del País Vasco-Euskal Herriko Unibertsitatea.

agreement with a strongly pyramidalized center. However, the bondangle sum about silicon is much larger than the computed value $(\sum Si_{\alpha} = 268^{\circ})$ for the parent molecule H₃P-SiH₂,¹⁵ probably for steric reasons. These structural features suggest a highly polarized P-Si ylidic bond with little or no P=Si π character, in marked contrast to the carbon congener I, which features a shortened P-C bond (~ 1.68 Å) compared with that in phosphonium salts (1.78–1.80 Å) and a nearly planar carbon center due to the P-C negative hyperconjugation.¹⁶ Indeed, Wiberg bond orders¹⁷ calculated for 2 (P-Si, 0.856) indicate that the P-Si bond has no noticeable double-bond character. Moreover, the relatively short C1-N1 (1.351 Å) and P1-C2 (1.731 Å) bonds and the elongated C1-C2 bond (1.381 Å) reveal good delocalization of the enamine π electrons toward the positively charged phosphonium center.

Although the phosphonium sila-ylide 2 is stable in solution as well as in the solid state at rt under inert atmosphere, it was found to be highly reactive. Indeed, the reaction of 2 with H₂O immediately led to the corresponding 2-phosphoxide enamine derivative 4 (Scheme 2). The silicon fragment $[HOSi(Ph)H_2]$ could not be analyzed because of its rapid oligomerization accompanied by the release of H₂. Although we could not detect the possible intermediate 3, the formation of the phosphine oxide, which formally arises from deprotonation of H₂O by the negatively charged silicon center followed by nucleophilic attack of the resulting hydroxyl anion on the phosphorus atom, strongly indicates the α,β ambiphilic character (nucleophilic Si and electrophilic P) of the sila-ylide function of 2.18

Scheme 2. Reactions of 2 with H₂O and Mesitylaldehyde

Furthermore, the α,β -ambiphilic character of **2** can also be exploited in the sila-Wittig reaction with a carbonyl derivative. The addition of 1 equiv of mesitylaldehyde to 2 in ether at rt resulted in the formation of silene derivative 5. The spectroscopic data for the silene function (¹³C NMR, 39.6 ppm; ¹H NMR, 2.80 ppm) show upfield shifts compared with those for other silenes,¹⁹ indicating an interaction between the silicon center and the P=O fragment. As a consequence, the chemical shift in the ²⁹Si NMR spectrum is typical for a silene–Lewis base adduct [-18.7 ppm (d, ${}^{2}J_{SiP} = 7.0$ Hz)]. The structure of silene 5 was unambiguously confirmed by X-ray diffraction analysis and reveals the silene with a trans configuration (Figure 1). Derivative 5 appears as a Lewis base adduct in which the phosphoxide coordinates in an intramolecular fashion to the strongly Lewis acidic silicon center with a Si-O distance of 1.549 Å. This interaction induces an elongation of the Si-C bond (Si1-C5, 1.755 Å)^{8,20} and a slight pyramidalization around the silicon center ($\sum Si_{\alpha} = 339.3^{\circ}$), which are features that have been reported previously for other silene-Lewis base adducts (silene-THF, 1.747 Å and 348.7°; silene-amine, 1.751 Å and 345.5°).^{21,22} In view of the strong oxygen affinity of the Si atom,²³ the lability of P-Si bonds,^{15a} and the previous report on the reactivity of transient phosphonium sila-ylides II with ketones,⁵ the results obtained here are rather surprising and reveal a very different behavior for 2 than for other silvlene-Lewis base adducts.^{5,10} Although the formation of the cis isomer of **5** was not detected, the stereoselectivity of the sila-Wittig reaction remains obscure because of the presence of the silene-phosphoxide interaction, which could decrease the rotation barrier around the Si-C1 bond, potentially inducing the isomerization reaction.

A suitable kinetically and thermodynamically stabilizing system enables the synthesis of stable phosphonium sila-ylides with reactivity similar to that of classical phosphonium ylides I. The results shown here demonstrate that the concept of Wittig reagents can be applied to heavier silicon-centered phosphonium ylides. This might be an important first step in further extending the application range of the Wittig reaction. The detailed mechanism of the sila-Wittig reaction is under active investigation.

Acknowledgment. We are grateful to the CNRS for financial support of this work.

Supporting Information Available: Experimental details regarding the synthesis and spectroscopic data of 2, 4, and 5; crystallographic data for 2a and 5 (CIF); and computational details. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Wittig, G.; Schöllkopf, U. Chem. Ber. 1954, 87, 1318.
 Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
 Hoffmann, R. W. Angew. Chem., Int. Ed. 2001, 40, 1411.
 Kolodiazhnyi, O. I., Phosphorus Ylides: Chemistry and Application in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 1999
- Seyferth, D.; Lim, T. F. O. J. Am. Chem. Soc. 1978, 100, 7074
- Toshimitsu, A.; Saeki, T.; Tamao, K. J. Am. Chem. Soc. 2001, 123, 9210. (7) (a) Tamao, K.; Nagata, K.; Asahara, M.; Kawachi, A.; Ito, Y.; Shiro, M. J. Am. Chem. Soc. 1995, 117, 11592. (b) Tamao, K.; Asahara, M.; Saeki, T.; Toshimitsu, A. J. Organomet. Chem. 2000, 600, 118.
- The related sila-Peterson-type reaction for the synthesis of a silene by (8)reaction of a trimethylsilyl-substituted silyl anion with a ketone has been described previously. See: Apeloig, Y.; Bendikov, M.; Yuzefovich, M.; Nakash, M.; Bravo-Zhivotovskii, D.; Bläser, D.; Boese, R. J. Am. Chem. Soc. 1996, 118, 12228.
- (9) (a) Ando, W.; Sekiguchi, A.; Hagiwara, K.; Sakakibara, A.; Yoshida, H. Organometallics 1988, 7, 558. (b) Gillette, G. R.; Noren, G. H.; West, R. Organometallics 1989, 8, 487.
- (10) (a) Takeda, N.; Suzuki, H.; Tokitoh, N.; Okazaki, R. J. Am. Chem. Soc. **1997**, 119, 1456. (b) Takeda, N.; Kajiwara, T.; Suzuki, H.; Okazaki, R.; Tokitoh, N. Chem.-Eur. J. 2003, 9, 3530.
- (11) (a) So, C.-W.; Roesky, H. W.; Magull, J.; Oswald, R. B. Angew. Chem., Int. Ed. 2006, 45, 3948. (b) So, C.-W.; Roesky, H. W.; Gurubasavaraj, P. M. J. Am. Chem. Soc. 2007, 129, 12049. (c) Driess, M.; Yao, S.; Brym, M.; van Wüllen, C.; Lentz, D. J. Am. Chem. Soc. 2006, 128, 9628.
- (12) Karsch, H. H.; Keller, U.; Gamper, S.; Müller, G. Angew. Chem., Int. Ed. 1990, 29, 295.
- (13) Driess, M.; Barmeyer, R.; Monsé, C.; Merz, K. Angew. Chem., Int. Ed. 2001, 40, 2308.
- (14) Power, P. P. Chem. Rev. 1999, 99, 3463.
- (15) (a) Baboul, A. G.; Schlegel, H. B. J. Am. Chem. Soc. 1996, 118, 8444. (b) Calhorda, M. J.; Krapp, A.; Frenking, G. J. Phys. Chem. A 2007, 111, 2859. (c) Liao, H.-Y.; Yen, M.-Y. New J. Chem. 2008, 32, 511.
- (16) Dobado, J. A.; Martínez-García, H.; Molina, J. M.; Sundberg, M. R. J. Am. Chem. Soc. 2000, 122, 1144.
- Wiberg, K. B. Tetrahedron 1968, 24, 1083.
- (18) The same type of reaction for phosphonium ylides $(R_3P=CR_2)$ with H_2O is known. See: (a) Schlosser, M. Angew. Chem., Int. Ed. 1962, 1, 266. (b) Becker, K. B. Tetrahedron 1980, 36, 1717.
- (19) Müller, T.; Ziche, W.; Auner, N. In The Chemistry of Organic Silicon *Compounds*; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons, 1998; Vol. 2, Chapter 16, pp 857–1062.
 (20) Wiberg, N.; Wagner, G.; Müller, G. *Angew. Chem., Int. Ed.* 1985, 24, 229.
- (21) Wiberg, N.; Wagner, G.; Reber, G.; Riede, J.; Müller, G. Organometallics 1987, 6, 35.
- (22) Mickoleit, M.; Schmohl, K.; Kempe, R.; Oehme, H. Angew. Chem., Int. Ed. 2000, 39, 1610.
- (23) For example, in the competitive olefination reactions of α -trimethylsilyl phosphonium ylide (Ph₃P=CHSiMe₃) with carbonyl compounds, it is known that the Peterson reaction (Si side) precedes the Wittig reaction (P side). See: Gilman, H.; Tomasi, R. A. J. Org. Chem. **1962**, *27*, 3647.

JA903540B